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Abstract. Excitations of the polaron types are investigated in the spin-1/2 quantum chain with XY ex-
change and Dzyaloshinsky-Moriya interaction, both coupled to acoustic vibrations of the substrate lattice.
The study is carried out via Jordan-Wigner transformation with the help of which the spin chain is
mapped onto a chain of spinless fermions. From the resulting effective fermion-lattice Hamiltonian, the
discrete equations of motion are derived. These equations are solved in the continuum limit for self-trapped
states near the bottom of the fermion spectrum interacting with long-wavelength acoustic lattice modes.
The associate polaron solution, which has a pulse shape, is shown to propagate bound to the induced
lattice kink distortion by translation along the chain at a constant velocity v. The pair can also experience
an additional acceleration ϑ0 when the free fermion charge is excited above its groundstate. The polaron
binding energy is strongly reduced, depending quadratically on the ratio D/J of the Dzyaloshinsky-Moriya
interaction strength D to the isotropic XY exchange interaction J . It is also found that polaron parameters
depend only on the XY spin-lattice coupling but not on the Dzyaloshinsky-Moriya contribution.

PACS. 63.20.Ry Anharmonic lattice modes – 71.38.-k Polarons and electron-phonon interactions –
75.10.Pq Spin chain models

1 Introduction

Neutron-scattering experiments [1] have reported the
presence of field-dependent incommensurate low-energy
modes in copper benzoate. While the incommensurabil-
ity was found to be consistent with Bethe’s exact solution
of the Heisenberg model in a magnetic field, the system
also exhibited an unexpected excitation gap induced by
the applied field. This excitation gap is as surprising as the
coexistence of a gap and a finite magnetization is inconsis-
tent with the rotational symmetry around the direction of
magnetization [2] in the Heisenberg spin chain. The origin
of the excitation gap has been the subject of great interest,
namely it was suggested [1,3–5] that the gap could be due
to a staggered magnetic field generated by the alternating
g tensor in Cu benzoate under the applied field. However,
Affleck and Oshikawa [6] established unambiguously the
consistency between the proposed mechanism of gap for-
mation involving the generation of a staggered field per-
pendicular to the direction of the applied magnetic field,
and the Dzyaloshinsky-Moriya interaction [7–9] present in
Cu benzoate [6]. From this they showed that all the exper-
iments reported on Cu benzoate could well be understood
in the unified framework of a model of spin-1/2 quantum
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chain with an antisymmetric Dzyaloshinsky-Moriya inter-
action, of a Dzyaloshinsky-Moriya vector orthogonal to
the b axis.

From the theoretical standpoint, Cu benzoate is be-
lieved to possess attribute of an S = 1/2 antiferromag-
netic quantum spin chain [1–6]. The Heisenberg spin-1/2
quantum chain has long served as a paradigm for strongly
correlated quantum many body systems, for instance its
quantum critical behaviour can be tuned by a magnetic
field. In the absence of Dzyaloshinsky-Moriya interaction,
the excitation spectrum of the model is dominated by a
gapless spinon continuum but a soft mode can be created
at the incommensurate wave vector by the application
of high fields [10]. However, at relatively moderate fields
the system can also accommodate a singlet-triplet gap
and a low-temperature non-magnetic groundstate result-
ing from a structural transition due to the coupling with
the molecular substrate. This structural instability, best
known as spin-Peierls instability [11,12], is the magnetic
counterpart of the Peierls transition [13]. Thus, within
the framework of Jordan-Wigner transformation [12] that
maps spins onto spinless fermions, the spin-Peierls transi-
tion can be shown to occur as the result of a gap devel-
oping at the Fermi level kF of the fermion spectrum due
to the coupling of the spinless fermions to the 2kF lattice
distortion.
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In recent years, the microscopic basis of the
spin-Peierls instability provided by Jordan-Wigner
transformation has motivated a great number of the-
oretical attempts on various aspects of the instability,
in a close analogy with theories developed for the
Peierls transition. For instance the similarity between
the fermion-lattice model derived from the deformable
XY model and the tight-binding model [14] without the
electronic spins, is a natural source of motivation for
considering possible polaronic features in the groundstate
of the pseudo fermion spectrum [15].

The tight-binding version of the quantum spin-1/2
chain with Dzyaloshinsky-Moriya interaction has been in-
troduced by Moriya [9], and formally identified [6,16]
as Anderson’s superechange model [17] equivalent to the
Heisenberg chain including the Dzyaloshinsky-Moriya in-
teraction term. Very recently it was used as basis of the mi-
croscopic fermion-phonon model [18–21] for an hypothet-
ical structural instability of the spin-Peierls type, which
otherwise is fully justified in Cu benzoate given the quasi-
one-dimensional anisotropy of the fermion spectrum cor-
responding to the associate quantum spin model.

The aim of this work is to take advantage of the ex-
isting microscopic model for the quantum spin-1/2 chain
with Dzyaloshinsky-Moriya interaction, to investigate the
influence of this interaction on the shape and dynam-
ics of nonlinear excitations of the polaron type in the
groundstate of the pseudo-fermion spectrum [15,22–25].
This study has direct connection with previous studies
of polaron modes in the tight-binding model coupled to
acoustic lattice vibrations [15,22–24] and therefore pro-
vides a natural extension of these previous works to one-
dimensional quantum systems dominated by competing
antiferromagnetic correlations. More concretely, the point
of focus of our attention is on the self-trapped states re-
sulting from the coupling of fermion states near the bot-
tom of the fermion spectrum to long-wavelength lattice
distortions. Indeed, while the interaction of fermion states
near the Fermi level with the 2kF lattice distortion triggers
the structural instability, thermal transport properties of
the system much more involve long-wavelength lattice dis-
placements. Consequently, the mechanism of heat trans-
port in the spin-lattice system can strongly deviate from
the classic mechanism known for the free monoatomic lat-
tice. As we will see, the formed long-wavelength polaron
induces a kink soliton distortion in the lattice such that
the lattice dynamics and thermodynamics are governed
by kinks. Thus, through our study we wish to provide
insights onto an understanding of both qualitative and
quantitative effects of the Dzyaloshinsky-Moriya interac-
tion on thermal transport properties of systems concerned
with the model, including copper benzoate [6] and copper
metaborate [26].

In Section 2, we introduce the spin-lattice model and
carry out necessary transformations to obtain the effective
single-particle Hamiltonian consisting of spinless fermions
coupled to quantum lattice vibrations. This Hamiltonian
is next used to derive the discrete equations of motion
for both the wavefunctions of fermion occupation proba-

bilities and the lattice displacement fields. In Section 3,
the shape of the fermionic polaron, as well as its excita-
tion spectrum and binding energy, are explicitly derived
exactly in the continuum limit. In Section 4 a brief con-
clusion of the study is given.

2 The effective fermion-lattice Hamiltonian
and equations of motion

Consider an antiferromagnetic system consisting of a spin-
1/2 quantum chain with an isotropic XY exchange J co-
existing with an antisymmetric exchange D = D z of the
Dzyaloshinsky-Moriya type. We assume in addition that
the spins interact with acoustic vibrations of the molecular
substrate lattice. The total Hamiltonian of the magneto-
elastic system is then:

H = Hph +Hmag. (1)

The first term

Hph =
∑

n

[
1

2M
P 2

n +
1
2
K (un+1 − un)2

]
, (2)

represents the contribution of the lattice where un and
Pn are position and conjugate momentum of an atom M
at site n of the one-dimensional lattice, and K is the
spring constant of Hooke’s springs that couple nearest-
neighbour atoms along the monoatomic chain. The second
term of H , i.e.

Hmag =
∑

n

Jn

(
Sx

nS
x
n+1 + Sy

nS
y
n+1

)

+
∑

n

Dn

(
Sx

nS
y
n+1 − Sy

nS
x
n+1

)
(3)

is the magnetic energy where

Jn = J [1 + λ (un − un+1)],
Dn = D [1 + λβ (un − un+1)]. (4)

In this second part S�
n denotes the �(≡ x, y, z) component

of the spin-1/2 operator Sn at site n, Jn and Dn are the
isotropicXY and antisymmetric or Dzyaloshinsky-Moriya
antiferromagnetic exchange integrals respectively. Accord-
ing to (4), they are assumed to have an homogeneous part
J and D while depending linearly on the relative displace-
ment of atoms M at sites n + 1 and n with spin-phonon
couplings λ and λβ respectively.

The Hamiltonian (2)–(4) is apparently quite rich com-
pared to the usual spin-lattice model for the spin-Peierls
transition based on the XY chain coupled to the lat-
tice. Thus, from the standpoint of fundamental physics,
it stands as a good generic model for studying struc-
tural instabilities in a great number of quantum spin
chains characterized by the coexistence of different ex-
change anisotropies including the symmetric and antisym-
metric exchanges of the Dzyaloshinsky-Moriya type. In
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particular the Hamiltonian (2)–(4) should provide rele-
vant and rich insights onto the spin-Peierls transition in
Cu benzoate. Regarding this last remark this Hamiltonian
has recently been used [19–21] to investigate the in-
fluence of the Dzyaloshinsky-Moriya interaction on the
zero-temperature phase diagram ofXY -based spin-Peierls
compounds. These recent studies, based on variational nu-
merical approaches, predicted surprising phenomena in-
dicating a net deviation of the mechanism of the spin-
Peierls transition from the standard mechanism known
through the XY model [12]. It has thus been shown [20]
that when the Dzyaloshinsky-Moriya interaction is uni-
form and only the XY part couples to the lattice, a strong
Dzyaloshinsky-Moriya interaction will always act against
a dimerized groundstate. Moreover, a reantrance transi-
tion from the gapless phase to the gapped phase was
observed with an increase of the Dzyaloshinsky-Moriya
dimerization rate β and when the Dzyaloshinsky-Moriya
interaction was in direct competition against the isotropic
XY exchange J . Interesting enough, these numerical pre-
dictions are confirmed [27] by analytical results within
the mean-field theory, in particular the mean-field the-
ory confirms unambiguously the crossover character of the
reantrance transition [20] which is manifest in the depen-
dence of the spin-Peierls transition temperature on the
Dzyaloshinsky-Moriya interaction parameters D and β.

In this work, we take advantage of the possible repre-
sentation of the spin-phonon Hamiltonian (2)–(4) in terms
of fermion degrees of freedom to investigate low-lying exci-
tations in the groundstate of the quantum spin-1/2 chain
coupled to dynamic phonons. More explicitly, we are inter-
ested with the dynamics of Bloch-type excitations local-
ized about the groundstate of the fermion spectrum in the
presence of the XY exchange, Dzyaloshinsky-Moriya in-
teraction and their simultaneous coupling to non adiabatic
lattice distortions. As a prior step we perform Jordan-
Wigner transformation [12] which allows us map the spin
degrees of freedom in (3) onto spinless fermions, leading
to the effective single-fermion Hamiltonian:

Heff =
1
2

∑

n

[
Gn c

†
ncn+1 +G�

n c
†
n+1cn

]
, (5)

where c†n and cn creates and destroys single-fermion states
respectively at site n of the one-dimensional chain, and
where we defined:

Gn = Jn + iDn, G�
n = Jn − iDn. (6)

It will also be useful for our next developments to recast
Gn and G�

n in simple forms [6]. Using the explicit expres-
sions (4) we rewrite Gn as:

Gn = Go +G1 (un − un+1),
Go = J + iD, G1 = λ (J + i β D). (7)

Next, introducing the phase parameters

α = arctg
(
D

J

)
, α1 = arctg

(
β D

J

)
, (8)

as well as the effective couplings

ε =
1
2
J

√

1 +
(
D

J

)2

, λ1 =
1
2
λJ

√

1 +
(
β D

J

)2

, (9)

the single-particle Hamiltonian (5) becomes:

Heff =
∑

n

[
εeiα + λ1e

iα1(un − un+1)
]
c†ncn+1

+
∑

n

[
εe−iα − λ1e

−iα1(un+1 − un)
]
c†n+1cn. (10)

Remarkably this last formula describes the one-particle
Hamiltonian of a chain of spinless fermions coupled to
acoustic vibrations in which the free-fermion spectrum ex-
periences a phase shift α, which is reflected on the coupling
of fermions to the lattice distortion through a phase factor
α1. In addition, we see from the definitions of α and α1

in (8) that finite values of the phase shifts in the quantum
spin system are intrinsic manifestations of nonzero values
of the Dzyaloshinsky-Moriya interaction D.

An inspection of the electronic structure of the effec-
tive Hamiltonian (10) in momentum space indicates that
the phase factor α gives rise to a shift of the Fermi level
by α, such that the new Fermi wave vector kα

F = π/2−α.
However, from symmetry considerations this shift does
not affect the size of the Fermi sea since all the states
are uniformly shifted by the same amount α. It follows
that the filling condition of the system is not affected by
the Dzyaloshinsky-Moriya interaction, i.e. the renormal-
ized fermion spectrum is still half filled with respect to
the Fermi level kα

F . But the dependence of the effective
coupling ε defined in (9) on the Dzyaloshinsky-Moriya in-
teraction D, suggests a possible influence of this last pa-
rameter on the Fermi velocity ϑα

F . Owing to this last effect,
the quantum dynamics of electronic states should experi-
ence drastic changes as we vary D with direct incidence
on polaronic excitations as the Dzyaloshinsky-Moriya in-
teraction is varied. To see these changes with more details,
we solve the equations governing the dynamics of atoms
and the Bloch states. These equations are derived from (2)
and (10) by applying Hamilton and Heisenberg formalisms
which lead to the two coupled discrete equations:

Mün = K (un+1 − 2un + un−1)

− λ1e
iα1

(
c†ncn+1 − c†n−1cn

)

+ λ1e
−iα1

(
c†n+1cn − c†ncn−1

)
, (11)

i�ċn = − [
ε eiα + λ1 e

iα1 (un − un+1)
]
cn+1

− [
ε e−iα + λ1 e

−iα1 (un−1 − un)
]
cn−1 (12)

where dot symbols refer to time derivatives. However, ex-
citations of the electronic states are best described by
means of the wavefunctions ψn(t) of the fermion occu-
pation probabilities 〈cn(t)〉 for each given lattice site n,
where the mean value is taken from the groundstate of
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the free-fermion spectrum. In terms of these new variables
and making the assumption that each electronic state has
a coherent dynamics, the above set of coupled discrete
equations becomes:

Mün = K (un+1 − 2un + un−1)

− λ1e
iα1

(
ψ�

nψn+1 − ψ�
n−1ψn

)

+ λ1e
−iα1

(
ψ�

n+1ψn − ψ�
nψn−1

)
, (13)

i �ψ̇n = − [
ε eiα + λ1 e

iα1 (un − un+1)
]
ψn+1

− [
ε e−iα + λ1 e

−iα1 (un−1 − un)
]
ψn−1 (14)

where the star denotes complex conjugate.

3 Polaron dynamics in the continuum limit

The point of focus of our attention is the dynamics of
electronic excitations localized at the bottom of the Fermi
sea. Although these modes put into play low-energy or
long-wavelength fluctuations, the robustness of polaronic
excitations of the soliton type can turn to be advantageous
in field-induced transport phenomena. For these low-lying
objects, the long-wavelength approximation n a → x
(where a is the lattice parameter) can readily be envis-
aged which in the weak dispersion regime expresses:

ψn±1 ≈ ψ ± aψx +
a2

2
ψxx ± 0(a3). (15)

Applying the same approximation to the displacement
fields un±1, the following set of coupled continuum equa-
tions arises:

ü − c2ouxx + 2aλ1 cosα1

(| ψ |2)
x

= 0,

c2o =
a2K

M
, (16)

i �ψ̇ + 2a2ε cosαψxx + 2iaε sinαψx

+ 2 (ε cosα+ aλ1 cosα1 ux) ψ = 0, (17)

where co is the speed of sound. As one can remark, in
spite of apparent resemblance with the set commonly ob-
tained in the studies of acoustic polarons [15], the two cou-
pled equations (16, 17) are actually unusual and therefore
absolutely specific to the Hamiltonian (10). Essentially,
the difference with previous equations resides in the sec-
ond equation which carries an extra term proportional to
ψx. This term clearly reflects changes in the coordinate
space of the fermion-lattice system with respect to the
XY model due to the account of Dzyaloshinsky-Moriya
interaction. In connection with this last remark, as well as
the fact that the Bloch theorem still holds such that the
periodicity properties of the Bloch wavefunctions ψ(x, t)
are invariants with respect to the renormalization of the
fermion spectrum by the shift α, we can substitute ψ(x, t)
in (16)–(17) with a new wavefunction defined as:

ψ(x, t) = φ(x, t) e−i κ(α)x, (18)

which is supposed to be consistent with the new path
followed by the system states for nonzero values of the
phase factor α. From this last point of view the parame-
ter κ(α) must be entirely determined by the free-fermion
phase factor α and should not dependent on time and
space. When (18) is replaced in (17) this yields the gauge
condition:

κ(α) =
1

2 a
tgα (19)

and it follows:

ü− c2ouxx + 2aλ1 cosα1

(| φ |2)
x

= 0, (20)

i � φ̇+ 2a2ε cosαφxx +
ε

2
(4 cosα+ sinα tgα) φ

+ aλ1 cosα1 ux φ = 0. (21)

Solving the last system, we first carry out the coordinate
change z = x − v t where v is the propagation velocity of
the lattice distortion u(x, t). With this new coordinate the
last system transforms to:

uzz =
2aλ1 cosα1

c2o (1 − v2/c2o)
(| φ |2)

z
, (22)

[
i �

∂

∂t
+

�
2

2me

∂2

∂z2
+ εα + g0 | φ |2

]
φ = 0, (23)

with

εα = (4 cosα+ sinα tgα)
ε

2
,

me =
�

2

4a2ε cosα
=

�
2

2a2 J
, (24)

and where

g0(v) =
4a2λ2

1 cos2 α1

c2o (1 − v2/c2o)
=

a2λ2 J2

c2o (1 − v2/c2o)
(25)

represents the effective fermion-lattice coupling. Equa-
tion (23) admits the single-soliton solution:

φ(z, t) = φ0 sech [ν (z − zo − ϑ0 t)] e iθk(x, t),

θk(z, t) = k (z − zo) − Eα(k)
�

t. (26)

A sketch of the spatial shape of the fermionic polaron
occupation density as well as of the lattice distortion it
induces are shown in Figure 1. We see that the polaron is
a localized pulse and the induced lattice distortion has a
kink shape. The pulse amplitude φ0 and inverse half width
ν are given by:

φ0 =
g0
2�

√
me, ν = 2φ2

0, (27)

while

Eα(k) =
�

2k2

2me
− εα − g2

0(v)
8 �2

. (28)
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Fig. 1. Spatial shapes of the fermionic polaron occupation den-
sity P (z) =|φ(z)|2 and of the accompanying lattice kink distor-
tion u(z), plotted in units of the polaron amplitude squared φ2

0.

is the energy of the k excited state of the fermionic po-
laron. Note that the last formula has been derived by
defining:

ϑ0 =
�k

me
, (29)

which, according to (26), contributes to the velocity of
translation of the polaron along the one-dimensional lat-
tice. It is also interesting to remark that the ways we de-
fined the polaron dispersion energy Eα(k) and velocity ϑ0

bring to the fore an effective mass me, which is nothing
else but the effective mass of the free charge particle in
the renormalized fermion spectrum. In this respect we see
that the effective mass of free-fermion particles is not af-
fected by the Dzyaloshinsky-Moriya interaction. However,
the polaron excitation energy Eα(k) as defined in (28)
involves not only the energies of the k excited states of
the free fermion, also present are contributions from the
tight-binding spectrum and the coupling to the lattice.
The total binding energy of the polaron is:

Eα = −εα − g2
0(v)
8 �2

. (30)

and is a quantity dependent on the ratio D/J as well as
on the fermion-lattice coupling parameter λ. In Figure 2,
we display a sketch of the variation of the polaron binding
energy with the ratio D/J . It is easy to check that (30)
does not depends on β. Although this is a surprising result
given previous predictions [19–21] of a relevant contribu-
tion of the Dzyaloshinsky-Moriya parameter β to the spin-
Peierls instability, it can easily be understood from the
continuum limit approximation which involves fermions
of a very long wavelength i.e. k � kkα

F , where effects of
the Dzyaloshinsky-Moriya interaction parameters D and
β are found to have drastic incidence [27] on the process
of gap formation in the fermion dispersion spectrum.

Before ending, it would be enriching for a global under-
standing of the physics of polarons in the current model, to
also examine the polaron parameters now in terms of the
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D�J
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E

Fig. 2. The polaron binding energy (at fixed velocity v of
the lattice soliton) versus the ratio D/J of the Dzyaloshinsky-
Moriya interaction D and the isotropic XY exchange interac-
tion J .

original wavefunction ψ(x, t). Indeed, if we substitute (26)
in formula (18) we obtain that the binding energy of the
ψ polaron is instead:

Eα =
�

2κ2

2me
− εα − g2

0(v)
8 �2

. (31)

This means that the dispersion energy of the ψ polaron
can be approximated by:

Eα(k) =
�

2(k − κ)2

2me
− εα − g2

0(v)
8 �2

, (32)

which shows that excited states of the ψ polarons are uni-
formly shifted down by κ with respect to the excited states
of the φ polarons, and consequently are of lower energies.

4 Conclusion

We have investigated the effects of the Dzyaloshinsky-
Moriya interaction on polaron shape and dynamics in
the microscopic version of the spin-1/2 quantum chain
with an isotropic XY exchange and the Dzyaloshinsky-
Moriya interaction. We found an explicit expression of the
polaron shape reflecting the relevant dependence on the
Dzyaloshinsky-Moriya interaction parameters. However, it
appeared that the continuum limit approximation favours
the XY exchange against the Dzyaloshinsky-Moriya in-
teraction in the formation process of the fermion polaron,
especially when polaronic processes involve fermion states
far below the Fermi level. The last result is quite rele-
vant to the physics of the system and in particular trans-
port properties of cooper benzoate to which the present
study addresses in primary. Note also that a spin-Peierls
instability in this system is fully consistent with the one-
dimensional anisotropy of its electronic structure result-
ing from the Jordan-Wigner transformation as predicted
in the general case of quasi-one-dimensional quantum spin
chains coupled to the lattice. For this spin-Peierls insta-
bility, important contributions from the Dzyaloshinsky-
Moriya interaction parameters D and β are expected in
the opening of the gap at the Fermi level kα

F of the one-
dimensional fermion spectrum.
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